学位专题

<

叠加合成非线性放大16QM高速调制技术的研究

赵辉
中国科学院空间科学与应用研究中心
引用
高速数字调制技术是通信领域的核心技术之一。目前国内外卫星数传系统大多采用QPSK调制方式,但是QPSK频谱利用率只有2b/s/Hz。随着卫星通信技术的飞速发展,使得有限的频带资源日益拥挤,成了应用“瓶颈”。16QAM频谱利用率是QPSK的2倍,但是采用常规的正交调幅法得到的16QAM调制信号是非恒定包络,必须采用线性功率放大器,这样功放只能工作在非饱和状态,效率很低,造成航天器上宝贵能源的浪费,也加重了航天器能源供应系统的压力。国际上只有INTELSAT组织在卫星通信中进行过16QAM数传试验,他们采用的也是常规的线性放大16QAM调制技术,并且数传速率不高。 为了改进16QAM以适用于卫星通信领域,本文深入研究了一种非常规的叠加法合成16QAM的方法。不同于常规的正交调幅法16QAM调制,叠加法的原理是用两个经过饱和功率放大的QPSK信号在功率合成器中相叠加合成出大信号的16QAM,这样就不需要再进行功率放大。这种叠加法16QAM命名为NLA-16QAM,它不仅具有高频谱利用率,而且可采用饱和功率放大器,有效利用航天器上宝贵的能源。这种工作在L波段的NLA-16QAM调制器,在保证矢量幅度误差(EVM)小于8.59%时,最高码速率超过200Mb/s。同时本文以NLA-16QAM扩展出一系列改进后的叠加法NLA-16SQAM、IJFNLA-16QAM、IJF-NLA-16SQAM等调制技术。本文的主要研究工作如下: 第一个方面,主要研究了QPSK/SQPSK高速调制技术。为了产生NLA-16QAM/SQAM信号,我们研制了高性能的QPSK/SQPSK高速调制系统,比较了高速QPSK和SQPSK在技术实现和性能上的异同;对其进行了深入的研究,并根据实验测试结果给出了有价值的结论。 第二个方面,研究如何用两路QPSK高速调制信号叠加合成NLA-16QAM信号。首先将一路串行数据流经串并转换分成4路并行数据流,形成两对I、Q信号;将每对I、Q信号由绝对码转换成相对码后,送往各自的QPSK调制器,产生的两路QPSK输出信号分别经各自的饱和放大器放大后,功率电平相差6dB,再经功率合成器合成后就得到16QAM信号。文中同时也研究了SQPSK调制信号叠加合成NLA-16SQAM信号,并比较了NLA-16QAM和NLA-16SQAM在技术实现和性能上的异同;根据实验测试结果给出了有价值的结论。第三个方面,研究了宽带微波信号放大器、微带大功率合成器、高速伪随机码发生器、锁相频率综合器、升余弦脉冲成型滤波器等辅助系统。使本文研究课题具有一个完整发射机系统的雏形。 据资料查询,未发现世界上有高码速率(>100Mb/s)的可采用饱和放大的16QAM调制方式的卫星高速数传系统实际应用。可以预见,一旦本文介绍的NLA-16QAM/SQAM高速调制技术用于卫星通信,对扩宽卫星通信业务,促进卫星通信的发展,具有积极意义。

高速数字调制;QPSK调制;SQPSK调制;正交调幅法;16QAM调制信号;卫星通信;非线性放大

中国科学院空间科学与应用研究中心

博士

空间物理学

孙辉先

2006

中文

TN911.3;TN761.93;TN927.2

176

2007-06-11(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅