学位专题

目录>
<

多系统GNSS并行精密数据处理关键技术研究

蒋春华
山东大学
引用
GNSS精密数据处理是高精度GNSS大地测量及工程应用的关键。经历多年的研究,GNSS精密数据处理理论与算法已基本成熟,正朝着更高精度、更多样化应用的方向快速发展。然而,随着GNSS系统的发展与成熟,全球国家或区域参考站数量剧增,实时数据服务及产业兴起,GNSS精密数据处理面临新的机遇与挑战。首先,大规模参考站和定位终端的数据处理规模庞大、计算耗时严重,靠提升硬件性能难以满足当前数据处理高效性和计算资源有效利用的迫切需求。其次,随着GNSS系统日益完善和现代化以及未来低轨导航卫星星座的发展,更多导航卫星投入全球应用服务,精密数据处理中与卫星有关的参数解算,其运算量大大增加、计算负担急剧增大。最后,实时或准实时GNSS数据处理与服务需求日益旺盛,对GNSS数据处理的低时延和高并发的要求越来越迫切。  计算机硬件及并行数据处理技术的发展,为多系统GNSS大规模、高精度、高效率数据处理带来了新的解决方案。基于此,本文围绕多系统GNSS并行精密数据处理关键技术展开研究,将MPI、OpenMP以及Pthread并行技术与GNSS精密定轨与钟差确定、大规模精密位置解算及GNSS大气参数提取与建模等算法进行深度融合,并基于计算机集群平台予以设计和实现。本文主要研究成果和创新点如下:  1)针对卫星轨道理论中的奇点问题,对拉格朗日/高斯无奇点卫星运动方程进行深入的分析和研究,从拉格朗日和高斯运动原始方程及其物理意义出发,考虑圆轨道、圆赤道轨道和赤道轨道三种奇点情况,推导了一种全新的拉格朗日/高斯无奇点卫星运动方程,并探讨了方程的连续性。该方程完全消除了零因子,从根本上解决了卫星运动方程的奇点问题。  2)针对多GNSS精密定轨与钟差确定的高时效的计算要求,本文基于MPI/OpenMP并行编程技术,提出了多系统GNSS精密定轨与钟差确定并行计算方法。针对GNSS精密定轨和钟差解算中核心处理过程耗时严重的问题,开展了并行处理策略与方法研究。分析了不同线程数和不同进程数对计算效率的影响,以及不同测站数不同数量GNSS系统下并行算法的适用性。实验结果表明:采用多进程和多线程技术均能提升GNSS精密定轨和钟差估计的效率,采用混合并行方法效率提升最大。且线程数越多、进程数越多,加速比也越大。并行方法对多测站和多系统的定轨和钟差估计效率提升更具优势。四系统精密定轨计算效率提高约30%,四系统钟差估计效率提高约59%,且两者精度损失均可忽略不计。  在此基础上,针对GNSS超快速轨道中的预报轨道随外推时间增加精度损失较快的问题,本文提出了一种多时段混合并行超快速轨道高效确定新方法。分析了当前GNSS超快速产品预报轨道精度不稳定的原因,提出了并行解算思路来提高轨道更新频率,推导了MPI分时段法方程叠加与OpenMP并行消参计算公式,设计了其处理流程。最终实现了多系统GNSS超快速轨道的并行确定方法。通过实测数据验证了该方法的有效性,能够将轨道更新频率从6小时提高到1小时。超快速轨道精度对比结果表明,新方法预报轨道结果比传统结果提高约30%。与国际同类轨道相比,新方法预报轨道具有较高的精度和稳定性,GPS、GLONASS、Galileo和BDS轨道1D RMS分别为3.21cm、5.08cm、5.56cm以及11.83cm,与国际同类产品最好精度水平一致。  3)针对大规模双差网解测站坐标解算效率低问题,本文提出了一种融合MPI技术与等价性理论的测站坐标并行计算新方法。首先推导了协因数阵、等价消参以及等价并行化的基本原理与算法。其次设计了等价并行算法的核心处理流程,最后对该新方法的精度和效率进行分析。结果表明,该算法在应用中能够有效消去待估参数且精度损失可以忽略不计(约10-9米)。基于此,利用实测数据开展了100个IGS站并行处理实验,结果表明,新算法效率提升高达56%,且并行结果精度与串行处理相当。效率提升性能分析表明:该算法比传统串行算法以及高斯约旦并行算法具有更高计算效率,且随着计算规模增大其优势更明显。最后,基于集群开展的并行算例证明:新算法在集群环境同样适用,且所用节点越多计算效率越高,最高提高约19倍。  4)针对大规模测站坐标解算计算量庞大、实时处理难度大、并发性强等问题,本文采用多种并行计算思路,设计并实现了GNSS大规模事后及实时并行处理方法。一方面,对GNSS事后大规模位置解算采用MPI/OpenMP混合并行法。对该方法的基本原理进行详细推导与分析,并对多进程多线程处理过程进行设计与实现。通过270个测站坐标解算实验,验证了该算法高效性,效率提升高达53.6%。另一方面,对GNSS实时大规模位置解算采用Pthread多线程并行方法。首先分析了并发多数据流和实时处理特点,在此基础上,对Pthread多线程并行实时处理流程和实验方案进行了设计。最终在MPI与Perl编程技术辅助下,基于实时数据流,实现了1500个参考站的实时位置多线程并行解算。  5)针对基于高时空分辨率多源气象资料的对流层建模,计算量巨大、效率低等问题,设计了一种对流层参数并行解算方法,建立了一种顾及天周期信号的1°×1°中国对流层格网模型。早期基于多源气象资料的对流层模型,受数据时空分辨率限制,其建模仅考虑年和半周年周期项。本文基于最新资料ERA5提取的1小时时间分辨率对流层参数,提出一种顾及天周期变化信息的高时空分辨率对流层模型。并在此基础上,基于MPI并行编程技术在集群平台,对该模型进行了构建。选用IGS对流层产品和ERA5提取格网信息对该模型精度进行了评估。结果表明,该模型在中国西北部地区比东南部地区精度高,与GPT2w模型以及其它低时间分辨率模型相比,新模型具有更高精度。同时也证明了,并行计算对高时空分辨率对流层建模和精度提升的积极意义。此外,分析了ERA5提取的对流层在中国区域的精度及其时空分布特征,为中国高精度对流层建模及水汽等参数计算提供了参考。  6)针对全球电离层模型构建效率提升问题,提出了一种GNSS电离层模型并行构建方法。全球GNSS地面参考站的增加及GNSS各系统的发展为GNSS电离层模型构建增加了巨大计算量,降低了数据处理效率。为此,本文实现了一种GNSS电离层的并行解算与建模方法。首先分析发现电离层模型构建耗时最大的处理过程分别是电离层TEC提取和模型解算。基于此,采用并行计算方法对整个处理过程进行优化,并进一步分析了采用不同并行策略以及混合并行方法的计算效率和模型精度。实验结果表明,并行计算能显著提高GNSS电离层建模效率,与串行方案、多进程方案和多线程方案相比,混合并行计算策略效率提升最为明显,从而为GNSS电离层建模提供一种新策略,有利于提升电离层产品的性能和时效性。

全球卫星导航系统;精密数据处理;并行计算;钟差估计;精密定位

山东大学

博士

理论物理

Hermann Josef Kaufmann;徐天河

2020

中文

TN967.1

2020-10-16(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅