学位专题

目录>
<

方管流道内气液两相流流动与传热特性实验研究

鲍辉
中国科学技术大学
引用
包层是聚变反应堆中实现氚增殖、中子屏蔽、热量传递的重要部件,包层的热工水力设计直接决定了聚变堆的传热效率和安全运行。在正常工况下,将依靠包层传热系统的强迫循环流动,将聚变堆核能转化为热能并传递给气轮机;在事故工况下,包层系统主泵不可用时,将依靠包层传热系统的自然循环流动,带走聚变堆衰变热量,以缓解事故后果。故本文针对聚变工程背景下的包层方形流道强迫循环条件下和自然循环条件下的流动和传热问题,进行系统的实验研究,为包层的热工水力设计和安全分析积累经验和提供数据支持。  本研究首先根据实验台架的理论设计,确定相关部件型号和技术参数,搭建热工水力实验平台并完成实验回路调试。研究发现相比于常规圆形管道,方管的过渡区Re数范围为1800-3000。这是由于方形流道边角区易产生漩涡和二次流,破坏层流层流,使得从层流向湍流转化提前,并且过渡区更窄。在层流区,层流时摩擦系数的实验结果与Shah-London关系式及理论计算值符合得较好;在湍流区,方形流道的尺寸越小,阻力系数越大。在Re数较大的时候,方管的湍流阻力系数大于圆管,这是由于方管边角漩涡引起的局部阻力较大引起的。对于传热规律,在层流区和湍流区,方管单相传热系数均大于圆管。而在同条件下的自然循环和强迫循环,由于自然循环浮升力影响,造成竖直加热管道截面速度分布趋势更平坦,形成较低的速度梯度,削弱了湍流输运效果,不利于换热,使得自然循环传热强度降低。  在方形流道的过冷沸腾实验研究中,ONB点位置可以通过壁面热电偶温度脱离线性变化的位置来判断。热流密度越高,越有利于过冷沸腾的产生;质量流速越大,压力越高,越不易产生过冷沸腾。在相同条件下,过冷沸腾的传热系数大于单相强制对流传热系数,这是由于气泡的扰动,增强传热效果的结果。通过对实验数据的处理,可以得到ONB点发生时壁面热流密度,壁面过热度及ONB点产生位置的实验关联式。并根据过冷沸腾的温度分布规律,建立数学模型,提出过冷沸腾传热系数的计算方法。相比强迫循环,自然循环传热效果较弱,造成在较低的壁面热流密度条件下就发生ONB。  在方形流道内的饱和沸腾实验研究中,壁面热流密度、压力对传热系数影响较大,含气率对实验结果影响较小,方形流道沸腾传热以泡核沸腾传热机理为主。热流密度提高,饱和沸腾气化核心数量会增加,气泡脱离的频率也会加快;系统压力升高,气泡的脱离直径会减小;提高压力和增加热流密度可以提高沸腾传热系数。在自然循环饱和沸腾区域内,会发生流动不稳定性现象,由于自然循环传热强度低和脉动引起的传热效果变差,会导致自然循环饱和传热系数也低于强迫循环饱和沸腾传热系数。在含气率较高的环状流区域,随着液膜的蒸干,会发生第二类沸腾危机(干涸)。通过实验可以发现随着入口流量的增大,进口含气率的减小,干涸点会发生延迟。需要同时考虑入口工况和当地工况对干涸发生的影响,得到强迫循环条件下的干涸点判据。  对于自然循环系统,由于压降,流量,含气率之间存在强烈的耦合关系,会发生流动不稳定性。压力的增大,流动不稳定性起始点(OFI点)发生滞后,临界流量增大,临界功率增大,波动的幅度减小,临界含气率增大;进口过冷度越大,流动不稳定性起始点发生滞后,临界流量增大,临界功率增大,波动的幅度减小,临界含气率增大;阻力越大,自然循环临界流量减小,临界功率减小,波动的幅度减小,临界含气率增大。通过时间域上的傅里叶级数拟合和频率域上的频谱分析得到脉动发生的周期,并发现压力越大脉动周期越小。通过实验分析,得到最终的不稳定边界图,最后根据相似原理和π定律,得到不稳定性边界预测模型。  综上所述,相比于强迫循环,在单相区域、过冷沸腾区域和两相沸腾区域,自然循环的传热强度更低,并且自然循环流动不稳定性也会提前发生。

聚变反应堆包层;方管流道;气液两相流;自然循环;强迫循环;流动特性;传热特性

中国科学技术大学

博士

核能科学与工程

刘松林

2019

中文

TL621.1

2019-08-23(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅