学位专题

目录>
<

原态仿生重组竹材湿热效应及胶合界面特性研究

闫薇
中国林业科学研究院
引用
一般竹材重组技术破坏了原态竹材天然构造优势,高污染、高能耗、低利用率及大量胶黏剂的使用导致其经济和环保价值不高。受蜂巢结构启示,竹材原态仿生重组材尽最大限度保留了竹材原态结构和特征优势,可实现大规格大跨度重组,属竹材利用创新研究,具有较好发展前景。毛竹是我国工业化利用量最大的竹种,也是竹材原态利用的重要竹种,本文以毛竹为基材开展研究。  竹材对湿热环境非常敏感,且竹材原态仿生重组材的胶合界面构成复杂,环境温度和湿度是导致结构材料强度降低和失效的重要因素,而仿生重组材对环境温湿度的响应研究尚属空白。结合原态竹材应用的自然环境,从单元到重组材开展递进研究,首先对原态竹材环状收缩机理和湿热应变响应机制进行研究,进而分析环境温湿度变化对仿生竹单元(六方竹单元)轴向抗压及胶合界面性能的影响,最后采用ANSYS有限元方法对仿生竹单元及重组材的承载特性进行模拟分析。研究结果如下:  (1)原态竹材的横向收缩为环状向心收缩,与含水率之间呈三次曲线关系(R2>0.83),竹青部位收缩程度大于竹黄部位致使竹壁厚度变薄;含水率随时间呈ExpAssoc函数(R2>0.99)下降;温度越高干缩应力越大越集中,80℃环境下原态竹材开裂最严重,源于较大的干缩内应力释放,且外表皮蜡层融化并密实地覆盖在表面,不利于水分蒸发;竹节对裂纹扩展具有一定的抑制作用;数字散斑相关方法能够呈现竹材干缩裂纹处和非裂纹处的周向及径向应变,印证环状收缩;竹青区域干缩应力集中,是裂纹起源部位,并向竹黄部位扩展,不同于外部荷载导致的破坏首先发生在强度较弱的竹黄部位,可为原态竹材防裂处理提供逆向思考。  (2)原态竹材对环境温湿度变化能够做出快速响应,温湿度变化越大,应变越明显,温湿度的影响主要体现为竹材含水率的变化;在相同的环境条件下,周向应变和轴向应变行为相似,但周向应变范围-500με~3000με,轴向应变范围-50με~225με,两者相差一个数量级。水分的移动通道与原态竹材的湿热应变息息相关,端部周向应变对温湿度响应更为敏感,中部周向应变滞后;原态竹材长度越长则端部和中部的应变差越大,而长度小于300mm的原态竹材两部位应变呈现此消彼长的现象,是竹材内应力均衡分布的结果。  (3)不同湿热环境下,仿生竹单元的外径变化率大于内径变化率,长度变化率最小,浸水处理的仿生竹单元尺寸变化最大;在高温高湿(40℃、90%)环境中,试样的实时质量与处理时间的平方根基本成线性关系;与气干状态下不同,高温高湿处理后竹节对竹材的轴向抗压表现为负作用,特别是浸水30d后含竹节试样轴向抗压强度明显小于节间试样(sig.<0.05);对照组抗压强度为50.72MPa,高温低湿(40℃、20%)处理试样强度为79.47MPa,两者差异显著(sig.<0.05);浸水30d、高温高湿30d和高温高湿15d处理后试样的结晶度略有增加,纤维素的润胀导致试样强度下降韧性增加,轴向抗压强度均显著小于对照组的强度(sig.<0.05),分别为30.56MPa、28.48MPa、32.43MPa;仿生竹单元的轴向抗压强度与湿热处理时间呈线性关系(R2=0.6437)下降;裂纹主要为纤维之间的撕裂并沿着纤维方向扩展,高温低湿处理的试样裂纹出现“纤维桥”和纤维断裂,消耗较多能量,轴向抗压破坏功最大。  (4)高-低湿热交替环境下,竹材和胶黏剂干缩湿胀的非同步性是胶合界面应力集中和强度弱化的主要原因,胶层部位边缘的干缩湿胀应力最大;胶合部位剪切强度受交替环境影响显著(sig.<0.05),处理后强度下降54.36%;胶合部位的横向抗裂强度由22.19 N·mm-1下降至15.57 N·mm-1,差异显著(sig.<0.05);处理后试样抵抗变形和破坏的能力下降,在较小荷载和位移下便产生破坏,断裂能下降62.32%;胶合部位破坏均由胶层两侧边缘开始,沿着胶层传递至某处发生偏转使得竹材发生径向断裂,这与仿生竹单元的几何特性有关,竹材胶合面是维管束密集的竹青部位,对应力偏转具有一定阻碍作用。  (5)仿生竹单元轴向和横向承载的ANSYS有限元分析:压应力(变)和拉应力(变)均对称分布,施加荷载部位、端部和较薄的竹壁是Mises等效应力(变)较大且集中的部位;竹材原态仿生重组材横向承载的ANSYS有限元分析:7个单元的应力分布不同,上层单元应力最大,中间单元应力分布较均匀,两侧单元粘结部位应力较大,非粘结部位应力最小。12个胶层部位应力(变)情况不同,靠近荷载的竖向胶层应力(变)最大,证明了仿生竹单元胶合试样横向抗裂强度测试的必要性和合理性;胶层边缘部位的应力(变)大于中间部位。有限元的计算结果与仿生竹单元和竹材原态仿生重组材的实际承载状态一致,可用来分析仿生重组材失效机理,为提升整体性能提供指导。

仿生重组竹材;湿热效应;胶合界面;轴向抗压;承载特性

中国林业科学研究院

博士

木基复合材料科学与工程

傅万四

2018

中文

TS613

143

2018-11-08(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅