学位专题

<
DOI:10.7666/d.Y3389190

光引发表面可控/活性接枝聚合固定化酵母细胞/酶制备生物乙醇研究

贺斌
北京化工大学
引用
生物乙醇具有可再生、绿色环保、来源多样性的特点,是可再生能源的重点发展方向。以纤维素为原料生产生物乙醇是制取该生物能源的主要途径,目前面临成本较高、难以工业化应用的困境。通过对纤维素转化生物乙醇过程中所用微生物、酶的固定化,可以改善其对环境的耐受性、易于分离、实现重复利用,降低成本,是开发生物乙醇制备技术的重要研究方向。本文基于光引发表面可控/活性接枝聚合技术,结合多种化学修饰方法,在聚合物基材表面引入了含官能团的聚合物刷及聚乙二醇(PEG)交联层,并实现了对纤维素酶及酵母细胞的固定化,探究了其在纤维素转化生物乙醇中的应用特点。本论文的研究工作及成果如下:  1、开发了在聚合物基材表面接枝含官能团聚合物刷固定化纤维素酶新方法,用于纤维素滤纸催化水解。首先通过紫外光激发的夺氢-偶合反应将异丙基硫杂蒽酮(ITX)半频哪醇“休眠种”引入到聚乙烯膜(LDPE)表面,其次在紫外光辐照下激活“休眠种”引发聚乙二醇单丙烯酸酯(PEGMA)活性接枝聚合,得到PEG聚合物刷。随后利用该反应可控/活性接枝聚合的特征,通过二次接枝,在紫外光下接枝单体甲基丙烯酸缩水甘油酯(GMA),得到同时包含PEG“间隔”段和环氧官能团的嵌段聚合物刷。通过聚赖氨酸或乙二胺中的氨基与环氧基反应将官能团转化为氨基,最终利用戊二醛与纤维素酶和氨基聚合物刷的偶联反应,得到以聚合物刷共价固定纤维素酶的功能聚合物膜。通过多种表征手段证实了嵌段聚合物刷的成功接枝及后续官能团转化反应。PEG“间隔”段长度为385nm,可以增加酶与聚合物基材的距离,提高固定化酶的表面活动能力。通过聚赖氨酸和乙二胺氨化处理的聚合物刷的酶载率分别为2.58%和1.98%。固定化纤维素酶的酶膜进行重复催化9个批次,水解5.0g·L-1滤纸,得到葡萄糖浓度从0.06g·L-1持续增加到0.57g·L-1。  2、发展了以聚丙烯无纺布(PPF)为基材,基于可见光表面可控/活性交联接枝聚合原位固定化酵母细胞的新方法。这一方法包含两步,首先,通过紫外光反应在PPF上引入ITX半频哪醇“休眠基”。之后在可见光激发下,“休眠基”可逆断开形成表面自由基引发含有酵母细胞的聚乙二醇二丙烯酸酯(PEGDA)溶液聚合,形成交联PEG三维“分子网布”并对酵母细胞原位包埋。通过表征证实大部分酵母细胞被包埋在交联网络内部,少量嵌在交联层表面,包埋酵母细胞活性优异。对聚合单体浓度、发酵温度、摇床转速、底物浓度等条件进行优化,发现在PEGDA浓度50%(v/v),葡萄糖浓度20g·L-1,30℃,200rpm时,乙醇产率最高为88.2%。经紫外光接枝包埋的酵母细胞的乙醇产率只有相同条件下使用可见光聚合包埋的1.12%,证实了可见光引发的优越性。在最优化条件下,固定化体系在25个批次(每个批次24h)的间歇重复发酵过程中,相对乙醇产率维持在80.7±0.4%到95.5±6.3%,发酵稳定性良好,说明酵母细胞在PEG分子网布内保持了较好的活性。同时,由于固定化体系成膜状,通过增加膜的数量,即可增大酵母细胞量,实现高底物浓度的转化,有利于工业应用。  3、开发了β-葡萄糖苷酶(BG)和酵母细胞分层共固定化技术,可实现同步糖化发酵生产生物乙醇。首先以PPF为基材,采用可见光表面可控/活性交联接枝聚合方法,以PEGDA为双官能团单体,将BG原位固定于基材表面。随后基于表面可控/活性自由基聚合技术的再引发特性,通过二次可见光接枝合成PEG“分子网布”并对酵母细胞进行原位固定,得到分层结构的酶/酵母细胞共固定体系。通过多种表征手段证实BG与酵母细胞已被成功分层包埋,其中固定BG酶部分厚度为40μm,固定酵母细胞层厚度为30μm,酶的固定化效率为98.09%,固定化BG的活性为游离酶的25%,酵母细胞的活性良好。通过分层固定化设计,以PEG分子网布的致密结构将酶与酵母细胞进行分隔,可有效地避免了酵母细胞与BG酶的互相干扰问题。分层固定化体系在重复发酵7个批次后,乙醇产率仍能维持在60%左右,体现出良好的操作稳定性。

生物乙醇;制备工艺;固定化酵母细胞;固定化酶;接枝聚合

北京化工大学

博士

材料科学与工程

杨万泰

2018

中文

TQ223.122

119

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅