学位专题

目录>
<
DOI:10.7666/d.Y2861525

PLZST反铁电陶瓷材料储能性能研究及其在多层陶瓷电容器中的应用

张倩
北京化工大学
引用
本论以(Pb0.925-xLa0.05Bax)[Zr0.52(SnyTiz)0.48]O3(PLZST,其中,x=0,2,4,6,8,10;y/z=39/9,35/13,32.5/15.5)反铁电材料为研究对象,通过Ba部分取代Pb及调整Sn/Ti比例来优化材料的微观结构,旨在提高PLZST陶瓷材料介电性能和改善充放电寿命,进而获得高储能密度的材料组成。利用SEM、XRD、介温测试仪、电滞回线测试仪及充放电测试仪来表征材料的组成对微观结构、介电性能、储能密度、储能效率及充放电寿命的影响。为了探究材料组成如何影响充放电寿命,采用高加速老化试验(HALT)、阻抗谱、热刺激退极化电流(TSDC)的方法来探测引起老化的粒子类型及其在老化过程中的作用。  Ba掺杂抑制了PLZST材料中焦绿石相的形成,提高了钙钛矿相的稳定性。当Ba由0增加至10mol%时,峰值介电常数由900增加至1200,峰值温度Tmax由145℃以4.8℃/mol%向低温移动。充、放电储能密度均随Ba掺杂量的增加先增加后减小,在Ba含量为6mol%时达到最大值,而对储能效率影响不大。在经历10000次充放电后6mol%Ba掺杂样品的可释放能量密度衰减8%,而未掺杂的样品衰减25%,因此,Ba的掺杂可以改善PLZST反铁电陶瓷样品的充放电寿命。随Sn/Ti比的降低,电滞回线由线性逐渐展现出了双电滞回线,极化强度呈增加的趋势,相变电场逐渐减小,最大极化强度迅速增加,使得充、放电储能密度大幅提高。高Sn/Ti比(39/9)的样品的可释放能量密度在经历10000次充放电循环后几乎没有衰减,而随Sn/Ti比由35/13继续减少至32.5/15.5时,其衰减由13%增加至27%。综合考虑Sn/Ti比选择为35/13较为合适。  根据PLZST样品的HALT曲线上漏电流先随时间缓慢增加,最后在某一时刻迅速增加,这表明PLZST样品老化过程经历了先缓慢老化和随后快速击穿两个过程。阻抗谱和TSDC结果表明:PLZST陶瓷样品的老化源于在制备过程中由于氧化铅挥发产生的偶极子V"Pb-V··O,氧空位V··O可从偶极子V"Pb-V··O中脱陷出来,沿电场方向移动,进而改变了PLZST陶瓷材料组成,引起了漏电流的增加。Ba掺杂不仅可以抑制偶极子V"Pb-V··O·产生,还阻碍了氧空位与相邻的O2-的位置交换,使得氧空位V··O脱陷过程变得更加困难,充放电寿命延长。  热重-差热结果表明,PLZST基多层片式陶瓷电容器的坯体的排胶需要依次经历残余的有机溶剂的蒸发、低燃点有机化合物的燃烧和高燃点有机化合物的分解三个过程。缓慢升温、在有机物烧除时保温适当时间,使用带有热风循环系统的高温烘箱,排胶时加盖氧化铝平板均可以减少排胶过程的翘曲和微裂纹产生。

反铁电陶瓷材料;锆锡钛酸铅镧;钡掺杂;烧结工艺;多层陶瓷电容器;储能密度

北京化工大学

硕士

化学工程与技术

刘晓林

2015

中文

TM286;TM534.1

73

2015-12-29(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅