学位专题

目录>
<

异构可重构计算体系结构及其实现技术

刘恒良
中国计量大学
引用
在雷达、通信、深度学习、人工智能等领域,算法的复杂程度日益提高,算法的形式千变万化,越来越多的场合对低功耗小型化的异构、可重构计算平台提出了迫切需求。本文针对上述应用设计了一种结合了中心控制节点、数据交换节点和多GPU的异构可重构计算体系结构,并设计了遵循该体系结构的软硬件平台。通过采用先进的RC-MPSOC器件作为中心控制节点,使得该体系结构支持硬件可重构,并且通过采用同时支持星形和环形连接的互连网络设计,使得该体系结构支持异构运算节点间的灵活、高速互连。该体系结构及原型平台具有小型化、低功耗的特点,并且可以提供灵活、高效的算法实现能力。  在硬件设计上,采用XILINX先进的Zynq SOC作为中心控制节点,除了软件的在线自适应重构,还可以通过ARM处理器对可编程逻辑做出硬件可重构;采用XILINX的Kintex-7系列FPGA作为运算节点互连网络的交换(Switch)节点,以实现GPU之间的环形高速连接,以及GPU和中心控制节点间的星形高速连接,使其能够支持灵活的算法结构;采用NVIDIA的TX1模块作为运算节点,提供灵活、高效的算法实现能力。  基于所设计硬件平台,在软件上利用 Zynq SOC 提供的内部接口设计了可重构功能模块,通过实现PCIe和SRIO间的高速数据交换设计了交换节点逻辑,进而构建了运算节点互连网络,通过设计存储管理功能模块实现灵活的存储分配,并且对这些模块做了功能测试和性能评估,为所实现的异构可重构计算平台的工程应用提供了完整的接口驱动和基本的功能模块。  最后,针对SAR回波模拟同心圆算法的大数据量、大运算量和算法结构复杂等特点,通过将斜距计算分配到4个GPU,然后在中心控制节点的PL完成卷积运算,该异构可重构计算平台与传统的异构计算平台相比,计算性能有了显著提高。本文提供的低功耗小型化的异构可重构计算平台还可以通过多板堆叠使用进一步提高运算能力,具备良好的可扩展性,具有一定的应用前景。

可重构计算;体系结构;数字信号处理;合成孔径雷达

中国计量大学

硕士

信息与通信工程

全大英

2018

中文

TN952

2019-04-30(万方平台首次上网日期,不代表论文的发表时间)

相关文献
评论
相关作者
相关机构
打开万方数据APP,体验更流畅